
Why your PostgreSQL tuning guide
might be wrong (and what to do about
it)

Mohsin Ejaz
Senior DevOps Engineer

www.dbtune.com

About me

• Nearly two decades in DevOps, QA, and
Release Management with PostgreSQL

• 17 years at EnterpriseDB

• Specializing in CI/CD, automation, and
database benchmarking

• Currently: DevOps,Pre Sales and
Customer success – focusing on
reliability and performance

• Focus: Ensuring database performance
isn't just a "best case" scenario, but a
reliable, automated reality for global
enterprises

www.dbtune.com

 Same PostgreSQL version. Same workload.

PostgreSQL

~ 6ms

PostgreSQL

~ 0.06 ms

www.dbtune.com

 Same PostgreSQL.

Different defaults

Upstream PostgreSQL

JIT : ON

Managed PostgreSQL

JIT : OFF

www.dbtune.com

What you will learn today

Three patterns

Different starting points

Infrastructure
changes the math

Interactions & amplifications

Practical takeaways

How to test on YOUR System

Infrastructure checklist

Data-driven tuning workflow

Tools you can use today

www.dbtune.com

 Pattern 1

Different starting points

www.dbtune.com

Example: JIT defaults in managed PostgreSQL

Upstream PostgreSQL

JIT : ON

Managed PostgreSQL

JIT : OFF

(RDS)

www.dbtune.com

Example: Aurora specific behavior

Upstream PostgreSQL

Standard optimizer

Managed PostgreSQL

Custom optimizer

Aurora has a custom optimizer based on benchmarking & telemetry

www.dbtune.com

Pattern 1 - What to do

Know your starting point

SHOW ALL;

Know your real baseline

1.

Compare with upstream defaults

Not assumptions - actual defaults

2.

Read provider documentation

Defaults reflect intent

3.

www.dbtune.com

 Pattern 2

Infrastructure changes the math

www.dbtune.com

Storage changes I/O cost

Local storage

Predictable Latency

Network - attached storage

Added latency & variability

www.dbtune.com

Storage variability breaks cost assumptions

● Same parameter
● Same PostgreSQL
● Different infrastructure
● Different math

www.dbtune.com

Compute changes parallelism math

www.dbtune.com

Compute - What to do

Tune for CPU stability

● Is CPU availability consistent or variable ?

● Observe saturation during real workload spikes

● Validate parallel plan under stress

● Tune for worst-case, not best-case conditions

www.dbtune.com

Caching breaks planner assumptions

Application cache

PostgreSQL cache

OS cache

Storage cache

DISK

PostgreSQL

www.dbtune.com

Caching - What to do

Tune for what PostgreSQL actually sees

● Don’t tune blindly for read latency if reads are absorbed
elsewhere.

● Focus tuning on what actually hits PostgreSQL: writes,
cache misses, maintenance operations.

● Validate assumptions with metrics, not intuition.

Pattern 2 summary

● Storage change I/O cost
● Compute changes CPI cost
● Caching hides reality

www.dbtune.com

Pattern 3

Interactions and amplifications

www.dbtune.com

Interactions: The cascade effect

random_page_cost

Estimated Cost

Parallelism JIT

Different plan

www.dbtune.com

Handling cascades safely

Don’t only ask: “Is this parameter good or bad?”

Ask: “What else does this unlock?”

Before - After → Compare

● Plan Shape
● Parallelism
● JIT

Before After Compare

www.dbtune.com

Statistics amplify everything

Statistics

Index choice

Join method

Parallelism

JIT

www.dbtune.com

Handling statistical amplification

Look for the smoking gun:

Estimated rows != Actual rows

Statistics

Index choice

Join method

Parallelism

JIT

Memory

Fix the cause, not the symptom

● Run ANALYZE after bulk loads
● Increase statistics targets for critical tables
● Use extended statistics for correlations
● Verify with EXPLAIN ANALYZE

www.dbtune.com

Pattern 3 – Emergent behaviour

Small changes

Large systems

Delayed effects

That's why tuning sometimes looks random.

It isn’t.

www.dbtune.com

How to test on YOUR system-CHECKLIST

Storage

● Local or network - attached ?
● Stable or variable under load?

PostgreSQL

● Self hosted or managed?
● SHOW ALL; vs upstream defaults
● Provider docs = changed assumptions

Compute

● Dedicated or burstable CPU?
● CPU limits (VMs, containers)

Workload

● OLTP or analytics?
● Read heavy or write heavy?
● Caching above PostgreSQL?

www.dbtune.com

Step 2 — Measure on YOUR system

Treat tuning like science, not folklore

www.dbtune.com

What to measure

Workload

● pg_stat_statements

● Top queries by total time

● Focus on top 5 (80/20 rule)

Before —> Change —> After —> Decide

Queries

● EXPLAIN ANALYZE

● Estimated vs Actual rows

● Plan changes,parallelism,JIT

Infrastructure

● IOPS,CPU saturation

● Credit exhaustion

● PostgreSQL doesn’t see

these– you must

www.dbtune.com

Tools (to support good thinking)

Query analysis

● pg_stat_statements

● EXPLAIN ANALYZE

● explain.dalibo.com

● pg_stat_plans

Tools don’t replace thinking. They reduce blind spots.

Infrastructure
metrics

● CloudWatch / Azure monitor /

Cloud monitoring

● Prometheus + Grafana

● pganalyze

Starting point

● PGTune

● SHOW ALL;

● Provider docs

 Automation

● DBtune

www.dbtune.com

 Why the puzzle wasn’t a bug

Same PostgreSQL

Same workload

Very different performance

Different starting points

Three patterns

Infrastructure changes the math

Interaction & Amplification

www.dbtune.com

Understand your system

What good PostgreSQL tuning looks like

Not memorizing parameters

But building a feedback loop

Checklist

Form a hypothesis
Change one thing

Measure after
Decide with data

Tuning guides are written for a system.

You are running a different one. Prove it on YOUR system

Q&A

www.dbtune.com

📩 mohsin@dbtune.com

Mohsin Ejaz

Thank you

mailto:mohsin@dbtune.com
https://www.linkedin.com/in/mohsinejaz/

